Usar Faster Whisper en macOS
1. Abrir la terminal y activar ambiente
source whisper-env/bin/activate
2. Abrir script
nano faster_transcribe.py
3.1. Editar script si se requiere transcripción desde audio, (tamaño del modelo (Ln 5) y/o ruta y nombre del audio(Ln 8))
from faster_whisper import WhisperModel
import os
# Load the model
model = WhisperModel(ālarge-v3ā, device="auto", compute_type="int8")
# Path to your audio file
audio_path = "/Users/nombreUsuario/Desktop/Audio.m4a"
# Transcribe
segments, info = model.transcribe(audio_path)
# Print language
print("Detected language:", info.language)
# Build transcript text
transcript_lines = []
for segment in segments:
line = f"[{segment.start:.2f} - {segment.end:.2f}] {segment.text}"
print(line)
transcript_lines.append(line)
# Save to a .txt file in the same folder as the audio file
base_filename = os.path.splitext(os.path.basename(audio_path))[0]
output_path = os.path.join(os.path.dirname(audio_path), f"{base_filename}_transcript.txt")
with open(output_path, "w", encoding="utf-8") as f:
f.write("\n".join(transcript_lines))
print(f"\nā
Transcript saved to: {output_path}")
3.2. Editar script si se requiere transcripción desde video (tamaño del modelo (Ln 6) y/o ruta y nombre del video (Ln 9))
from faster_whisper import WhisperModel
import subprocess
import os
# Load the model
model = WhisperModel("large-v3", device="auto", compute_type="int8")
# Path to your video file
video_path = "/Users/nombreUsuario/Desktop/Video.mp4"
# Extraer el audio como archivo temporal (.wav por compatibilidad)
audio_path = os.path.splitext(video_path)[0] + "_temp_audio.wav"
subprocess.run([
"ffmpeg", "-i", video_path,
"-vn", # no video
"-acodec", "pcm_s16le", # formato de audio compatible
"-ar", "16000", # frecuencia de muestreo recomendada por Whisper
"-ac", "1", # un solo canal (mono)
audio_path,
"-y" # sobrescribe si ya existe
], check=True)
# Transcribir el audio extraĆdo
segments, info = model.transcribe(audio_path)
# Mostrar idioma detectado
print("Detected language:", info.language)
# Construir texto transcrito
transcript_lines = []
for segment in segments:
line = f"[{segment.start:.2f} - {segment.end:.2f}] {segment.text}"
print(line)
transcript_lines.append(line)
# Guardar transcripción como .txt junto al video original
base_filename = os.path.splitext(os.path.basename(video_path))[0]
output_path = os.path.join(os.path.dirname(video_path), f"{base_filename}_transcript.txt")
with open(output_path, "w", encoding="utf-8") as f:
f.write("\n".join(transcript_lines))
print(f"\nā
Transcript saved to: {output_path}")
# (Opcional) Eliminar archivo temporal de audio
os.remove(audio_path)
4. Guardar
CTRL + O, Enter
CTRL + X to exit Nano
5. Ejecutar script
python faster_transcribe.py
6. Obtención de resultado
Transcripción en terminal
Archivo txt guardado en escritorio
Last updated